Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

A Probability-based Caching Strategy with Consistent
Hash in Named Data Networking

Yang Qin", Weihong Yang, and Wu Liu
Department of Computer Science,
Harbin Institute of Technology (Shenzhen),
Shenzhen, China,
“corresponding author: csyqin@hit.edu.cn

Abstract—In-network caching is one of prominent features of
Named Data Networking (NDN), which greatly improves the
performance of data transmission. In this paper, we propose a
probability-based caching strategy with consistent hash (Prob-
CH). Prob-CH makes caching decision based on the probability
that calculated by jointly considering content’s popularity,
node’s betweenness, and distance to consumers. The consistent
hashing algorithm is used to guarantee that there is at most one
copy cached in the network, which can reduce the redundancy of
cache. Moreover, Prob-CH forwards a newly arriving Interest
according to a dual forwarding strategy, in which an Interest
packet will be guided to producer and its cached node calculated
by consistent hashing, respectively. The simulation results show
that the proposed Prob-CH caching strategy can achieve better
performance in terms of cache-hit ratio, hop counts and server
load.

Keywords—named data networking;
probability-based; consistent hash

caching strategy;

I. INTRODUCTION

The biggest feature of NDN [1] is that the cached Data in
the intermediate routers can be requested by other nodes, which
greatly increases the reusability of content, saves bandwidth by
reducing the repeated transmission of the same Data, and
improves utilization of network resources. Named data
networking are primarily devoted to the study of scalability
issues based on name routing, efficient content distribution
strategies, content protection and security issues, and privacy
trust models. The most important one is the efficient content
distribution strategy. The caching strategy directly determines
the performance of the network. Therefore, the research on the
caching strategy can improve the content distribution efficiency
and reduce the waiting time of consumers. Because the caching
in NDN is very different from caching in web, Content
Distribution Network (CDN), etc. Thus, the existing caching
theory, model, and optimization method cannot be used
directly in NDN [2]. Therefore, it is important to study this new
cache network.

We proposed a probability-based caching strategy with
consistent hashing called Prob-CH. The proposed probability-
based caching model jointly considers betweenness of node,
popularity of content and the distance between current node
and consumer while making caching decision. Then, consistent
hashing [3] is used to reduce the cache redundancy. The goal of

978-1-5386-4870-4/18/$31.00 ©2018 IEEE

67

Prob-CH is to reduce the cache redundancy and increase the
diversity of cache contents. In NDN, Data packet only returns
along the reverse path of Interest packet. Therefore, Data
packet may be cached at the node on the path. There are mainly
two ideas while designing caching strategy. The first idea is to
cache based on node’s information on the path, which does not
require additional notification messages for cache coordination.
It has little overhead of communication but may lead to high
redundancy of cache. The second idea is to cache based on the
information of neighbor node. In this case, nodes obtain cache
information of neighbors by sending notification messages.
This method can reduce the cache redundancy and improve the
diversity of cached content by introducing additional overhead.
Therefore, we combine the advantages of the above two ideas
and design a novel caching strategy called Prob-CH, which has
the following features:

® Making caching decision based on the probability that
jointly considers the popularity of content,
betweenness of node, and the distance between

current node and consumer;

Applying consistent hashing algorithm to avoid the
communication overhead caused by coordination of
cache, and further reducing the cache redundancy;

Using a new forwarding strategy to explore cached
content in neighbor nodes, and thereby increasing the
ratio of cache hit.

The rest of the paper is organized as follows. Section II
introduces background of NDN and the existing researches on
caching strategies. Section III gives a description of the
proposed Prob-CH. We evaluate Prob-CH via simulations in
Section I'V. Section V concludes the paper.

II. RELATED WORKS

In this section, we first introduce NDN’s background
related to this paper. Then, a brief overview of existing
researches for caching strategy is given.

A. NDN Overview

NDN is a novel network architecture that focuses on the
content itself rather than the location. It differs significantly
from current TCP/IP-based architecture in many ways. CCN
uses a hierarchical name to identify content (e.g.,
/hit/sz/cs/video.mp4), rather than using IP address. In NDN,

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

communication is driven by the exchange of Interest and Data
packet. Consumer issues an Interest packet to request a desired
content. Producer responds to this Interest with a Data packet,
and the Data packet travels back to consumer by taking the
reversed path of Interest. In order to process Interest and Data
packet, each router is equipped with three tables: Forwarding
Information Base (FIB), Pending Interest Tables (PIT), and
Content Store (CS). FIB serves as the routing table; PIT is used
to record the unsatisfied Interest; and CS caches Data to satisfy
subsequent Interest, which provides in-network caching for
CCN. The processing of Interest and Data packet is shown in
Fig. 1.

Incoming __| X X. Outgoing
Interest _’I cs P FIB > Interest

Data J * N * X

- Add interfaceto Drop or

Downstream PIT entry NACK Upstream
Outgoing | Forward N o | Incoming
Data Cache Data
X
discard Data

Fig. 1. The processing of Interest and Data.

While receiving an Interest packet, the CS will be checked
first. If the corresponding Data packet is found, the Data will
be sent back to response this Interest. Otherwise, it inquires its
PIT. If an entry of this Interest exists in PIT, router records the
incoming interface of Interest; if the router cannot find an entry
for this Interest in PIT, it forwards the Interest according to FIB.
Once a router receives a Data packet, it will cache the Data into
its CS based on the caching strategy. It sends the Data to the
next hop according to the interface recorded in PIT.

B. Caching Strategy Overview

In NDN, the default caching policy is to cache everywhere,
namely, to cache Data at every node that Data packet passes
through. This strategy may cause high cache redundancy. The
collaborative strategies between nodes can be divided into two
categories: implicitly collaborative strategy and explicitly
collaborative strategy.

1) Implicitly collaborative caching

The implicitly collaborative strategy refers to a strategy of
caching that nodes do not send notification messages; therefore,
it does not require additional communication overhead, and the
nodes can make caching decision at wire speed. Due to the lack
of explicit collaboration between nodes, the distribution of
cache copies may be uneven. The Implicitly collaborative
strategies can be divided into two categories: deterministic
caching and probability-based caching.

a) Deterministic caching

This type of caching strategy determines whether a packet
is cached on a node in a deterministic way. It is relatively
simple and easy to implement, but it is not flexible and cannot
adjust the cache location when the status of network changes.
LCE [4] is a simple deterministic caching strategy, which
caches on all nodes through which packets pass. LCD [5],
which caches on only the next-hop node of the cache hit node,

68

can gradually move the Data closer to the edge of network with
the number of requests increasing. MCD [5] caches at the next
hop of cache hit node, and at the same time removes the cache
on the hit node to reduce the cache redundancy. Betws [6]
caches Data in the node with the greatest betweenness on the
returning path to cache Data on important nodes.

b) Probability-based caching
Probability-based strategy caches Data by probability.
RCOne strategy [7] select a node with probability p=1/k to

cache on the returning path of Data, where K is the length of
path. ProbCache strategy [8] calculates the probability of
caching by weighting the distance between the node and the
consumer, making the Data packets move closer to the edge of
the network. The strategy proposed in [9] establishes a caching
model by considering the residual capacity of node, the path
length, and the neighboring nodes, which can effectively
reduce server load and increase the diversity of content in the
network.

2) Explicitly collaborative caching

Explicitly collaborative caching strategies need to
coordinate between nodes by sending notification messages.
The existing explicitly collaborative strategies are mainly
divided into on-path collaboration and neighborhood-based
collaboration.

a) On-path collaborative caching

Nodes on the forwarding path need to collaborate to make
caching decision according to state information along the path.
Cooperative En-Route web Caching (CERC) [10] collects the
information about cache status of nodes and the request
frequency along the path, then use the dynamic programming
to determine the optimal cache node. APDR (Content-aware
Placement, Discovery and Replacement) [11] makes caching
decision based on residual size of cache and the number of
ports that were requested, etc.

b) Neighborhood-based collaborative caching

Neighborhood-based collaborative strategy means that the
nodes collaborate with each node by exchanging notification
messages to its neighbors. Reference [12] proposed a
neighborhood-based method that will only cache a Data packet
when none of its neighbor has cached a copy of the Data. The
pull with piggybacked push (PPP) strategy [13] pushes a
notification message to inform the neighbor nodes proactively
that what Data packets it has.

III. PROBABILISTIC-BASED CACHING WITH CONSISTENT HASH

In-network caching can reduce network traffic and save
bandwidth; however, it may lead to a large amount of cache
redundancy. Using hashing method to map content name to a
unique node and caching the content in this node can limit the
number of copy to at most one, which can result in low
redundancy and high cache diversity.

A. Consistent Hash

The modular hashing algorithm is simple, efficient, and
easy to implement; however, it may cause the problem of

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

rehashing when the number of nodes changes. For example,
when a node is added to or removed from the network, all
cache locations will change and the cached contents become
unavailable. All cached Data will be deleted or moved, which
results in high network delay and traffic overhead. Thus, we
use Consistent Hashing (CH) [3] algorithm to solve this
problem. The CH algorithm is summarized as follows.

First, based on the number of content objects in the network,
we set a ring bucket for mapping nodes and content objects to
the ring bucket. Assume that the size of ring bucket is M, as
shown in Fig. 2. Then, nodes and content’s names are mapped
into ring buckets using different modular hashing operation, so
that each node and name has a unique bucket on the ring. To
cache a Data packet, the location of this Data will be found on
the ring bucket by consistent hashing, then Data will be cached
in the node that it first encounters in the clockwise direction on
the ring. For example, content C will be cached at node 4 in
Fig. 2.

When a new node is added to network, it is first mapped
into the ring as shown in Fig. 2. In this case, the content
between node 4 and new node will be cached in the new node
according to CH. When a node is removed (e.g., node 1 in Fig.
2), content located between node 1 and 6 on the ring will be
cached on node 2, namely, content A will be cached on node 2.

M-1

0

node 2

new node

node 3

node 4

Fig. 2. Consistent hashing algorithm.

B. Prob-CH Caching Strategy

1) The format of packet

To realize Prob-CH strategy, we modify the format of
Interest and Data by adding several new fields, which is shown
in Fig. 3. For Interest packet, we add a hop counts field to
record the hop counts of this Interest, so that the current node
can know the distance between the current node and the
consumer during Data packet returns. When forwarding flag
field is set to false, the Interest is forwarded using the shortest
path algorithm. When the flag is true, a hash-based
neighborhood lookup algorithm is used for forwarding. For
Data packet, the popularity and hop count fields are used to

calculate the forwarding probability. The Time Update field is
used to record the latest update time of the popularity.

Data packet

Hop counts Time update
>Forwarding flag> < Hop counts <

Fig. 3. The modified Interest and Data packet.

2) Design of Prob-CH
a) The forwarding of Interest

Nodes are classified into Edge Router (ER) and Core
Router (CR).

When edge router receives an Interest, it first checks for
matching Data in its Content Store (CS). If it exists, Data is
returned on the interface from which the Interest came;
otherwise, hop counts flag in Interest is increased by one and
Interest will be forwarded according to the FIB. Then, the
name of Interest will be mapped using consistent hashing. If
the mapped node is the current node, this process ends.
Otherwise, the Forwarding flag in Interest is set to true, and
this Interest will be forwarded to the mapped node. This
process is shown in Algorithm 1.

Algorithm 1

1: while receiving Interest do

2: if find Data in CS then

3. forward Data;

4: return,

5: else

6: increase Hop count by 1;

7: forward Interest by FIB, create new entry in PIT,
8: calculate mapped node by consistent hashing;
9: if current node == mapped node then

10: return;

11: else

12: set forwarding flag to true;

13: forward Interest to mapped node;

14: end if

15: end if

16: end while

When a core router receives an Interest, it first checks the
forwarding flags. If the flag is false, this Interest will be
forwarded as a normal Interest; otherwise, the mapped node of
this Interest is calculated using consistent hashing. If the
current node is the mapped node, the Data packet will be
returned if it is found in CS. If there is no matching Data found,
the Forwarding flag is set to false, and the Interest is forwarded
according to FIB. If the current node is not a mapped node of
this Interest, Interest packet is forwarded to its mapped node
via the shortest path. This process is shown in Algorithm 2.

Algorithm 2

1: while receiving Interest do
2: if forwarding flag is false then
3: if hasrecord in PIT then

69

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

4: add incoming interface in PIT;

5: else

6: forward Interest by FIB;

7: create new item for Interest in PIT;

8: end if

9: else

10: calculate mapped node by consistent hashing;
11: if current node == mapped node then
12: if find Data in CS then

13: forward Data;

14: else

15: set forwarding flag to false;

16: forward Interest by FIB;

17: end if

18: else

19: forward Interest to mapped node;
20: end if

21: endif

22: end while

b) The caching strategy

When the Data packet returns, PIT is checked first. If there
is no record in PIT, this Data is discarded; otherwise, the Data
packet is forwarded according to PIT. Then, the mapped node
of the Data packet is calculated using consistent hashing. If the
current node is not the mapped node, the Data will not be
cached; otherwise, the Data packet is cached according to a
probability-based caching strategy. The caching probability can
be calculated as follows:

p=aoU +pC+yD €))

where U is the normalized popularity, C is the normalized
betweenness of node, and D is the normalized distance between
the current node and consumer. « , f, y are weights, and

a+ f+y=1.The process of caching is shown in Algorithm 3.

Algorithm 3

1: while receiving Data do

2: if find record in PIT then

3: forward Data by PIT;

4: calculate mapped node by consistent hashing;
5: if current node == mapped node then

6: calculate the caching probability by (1);

7: make caching decision based on caching probability;
8: else

9: discard Data;

10: endif

11: discard Data;

12: endif

13: end while

The popularity U is updated as
I N

U=oU,,+0,—— 2
1" old 2 At 5 ()
where U, is the popularity updated last time; At is the

time that has elapsed since the last time the popularity was

70

updated; N is the number of requests for this Data since the last
time the popularity was updated; & is the threshold of the
number that this Data packet is requested. Threshold o is used
to normalize the popularity, and if N>&, we set N/§=1.
When At is longer than the predefined threshold ¢ , the
popularity will be updated according to (2). The node’s

betweenness is calculated as Z#y#i Oy (I)/ oy, » Where o, |

is total number of the shortest paths from node X to node y, and
o, (i) is the number of those paths that pass through node i.

Then, we normalize the betweenness as follows

N 2XZx¢y¢iGX,y(i)/o-xsy
cli)= (n-1)x(n-2)

where n is the total number of nodes in the network. The
distance between the current node and consumer can be
normalized as D =1/d .

)

C. Analysis of Prob-CH

We use an example (as shown in Fig. 4) to analyze Prob-
CH in detail. In Fig. 4, Node 1 and Node 8 are edge routers,
while the rest of nodes are core routers.

The mapped node\‘

Toward
v producer

Interest
enters

Node 2 Node 6

Fig. 4. An illustrated example of Prob-CH.

Prob-CH combines with the merits of probability-based and
hash-based caching strategy. Prob-CH makes caching decision
by probability that calculated based on content’s popularity,
node’s betweenness, and the distance to consumer, while the
problem of cache redundancy can be solved by consistent
hashing. The common strategy always forwards Interest to the
corresponding mapped node, and only forwards by the shortest
path while cache miss occurs. Thus, hash-based strategy may
cause a longer delay though it can achieve lower cache
redundancy. Prob-CH uses a dual forwarding strategy to not
only guarantee the shortest path while forwarding, but also
solve the problem of finding the mapped node of hashing.

Prob-CH only applies dual forwarding when the Interest
packet reaches the edge router for the first time. Core routers
choose forwarding strategy to forward Interest according to
forwarding flag. As shown in Fig. 4, the Interest first arrives at
the network via node 1, and then it is forwarded by dual
forwarding strategy toward both the mapped node 4 (indicated
by dash line) and the producer (indicated by solid line). If the

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

Interest cannot find the requested Data in the mapped node 4, it
needs be forwarded toward producer by using FIB.

In another case, we assume that the mapped node is node 5.
‘When node 2 receives an Interest from node 1 for the first time,
this Interest is forwarded by dual forwarding strategy. Then, if
node 2 receives the Interest requesting for the same Data, it
first checks the forwarding flag. When the forwarding flag is
true, the mapping node of this Interest is calculated by the
consistent hashing. Node 2 is not a mapped node; therefore, the
Interest packet will be forwarded to its mapped node (i.e., node
5).

During the returning of Data packet shown in Fig. 4, node 8
forwards two copies of the Data according to PIT record. One
of the copies will return to consumer via the shortest path, and
the other one is forwarded to consumer passing through the
mapped node. Then, the Data will be cached in the mapped
node.

IV. SIMULATIONS

In this section, we use Icarus [14] simulator to compare the
proposed Prob-CH strategy with probability-based strategy
(denoted as Prob-BP), Hash strategy, and Always strategy.
Prob-BP caches Data based on probability calculated by (1).
Always strategy caches Data at every node along the path. We
study the cache hit ratio, hop counts and server load by varying
cache size from 1% to 10% of the sum of all content sizes.
Cache size is the ratio of the number of contents that each node
can cache to the total number of contents. This simulation uses
the European Research and Educational Network (GEANT)
network topology [15], which consists of 44 nodes and 61 links.
We use the Dijkstra algorithm to calculate the shortest path.
We adopt Least Recently Used (LRU) as cache replacement
strategy.

A. Cache Hit Ratio

In Fig. 5, the cache hit ratio increases with the increase of
cache’s size. Among those four caching strategies, the Always
strategy has the lowest cache hit ratio because it causes a large
amount of redundancy. The Prob-BP strategy reduces the
redundancy to a certain extent, but Prob-BP only considers the
cache information of nodes along the forwarding path and does
not consider the caches of neighbor nodes. Thus, its hit ratio is
lower compared with Hash strategy and Prob-CH strategy.
Both Hash strategy and Prob-CH strategy have only one
cached copy in the whole network, which can greatly improve
the content diversity, and finally result in higher average hit
ratio. The difference between the Prob-CH and Hash in hit
ratio is very small. The main reason is that the diversity of
cached contents is almost the same with these two strategies;
however, Prob-CH outperforms Hash strategy in that it is
optimized by the probability-based caching strategy.

71

—a&— Always+LRU —&— Prob-BP+LRU

—%— Hash+LRU —&— Prob-CH+LRU

Cache Hit Ratio (%)

1 2 3 4 5 6 7 8 9
Cache Size (%)

Fig. 5. Cache hit ratio with different cache size.

B. Hop Counts

In Fig. 6, as the size of cache increases, the hop count
gradually decreases. Hash strategy forward the Interest to the
mapping node, and only forwards it according to the FIB when
fails to get Data at the mapping node. The forwarding of
Interest and Data may become inefficient, which leads to larger
number of hop counts. The high redundancy introduced by
Always strategy lowers the cache hit ratio, and finally results in
more hop counts. The trend of Prob-BP’s curve in Fig. 6 is
similar to that of Hash strategy because both strategies only
consider the cooperation of cache along the paths, rather than
among neighborhood. Prob-BP considers the factors such as
betweenness; therefore, it can outperform Always strategy in
terms of hop counts. By combining the advantage of Prob-BP
and consistent hashing, Prob-CH greatly reduces the number of
hop counts. Moreover, Prob-CH can increase cache diversity,
which means more Interest packets can be satisfied while
forwarding. When the size of cache becomes larger, the
diversity of content will become richer, along with high
probability of cache hit. Thus, the hop count of Prob-CH
reduces faster than other strategies.

—&— Always+LRU —&— Prob-BP+LRU

16

—%— Hash+LRU —&— Prob-CH+LRU

Hop Count

7 8 9

4

5 6
Cache Size (%)

Fig. 6. Hop counts with different cache size.

C. Server Load

From Fig. 7, we can see that server’s load decreases when
the cache size increases. This is because a node can cache more
Data packets with larger size of cache, and higher probability

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

of cache hit can be achieved. The number of Interest packets
arriving at producer will become less; thus, the load of server
can be reduced. Prob-BP and Always strategy only consider the
cache along the forwarding path, and neglect the cache
information of neighbors. Therefore, the Interest has to be
forwarded to producer when cache miss occurs along the
forwarding path. Prob-CH and Hash strategy are aware of the
location where Data packets may be cached, which increases
the availability of resources. Meanwhile, because of its high
cache diversity, a large cache hit ratio can be obtained. From In
Fig. 7, it can be seen that the load of Prob-CH and Hash
strategy are significantly lower than that of Prob-BP and
Always strategy. Though Prob-CH somewhat outperforms
Hash strategy, performances of Prob-CH and Hash strategy are
closed. This is because the types of cached content are almost
the same.

w2
(=]

5]
W

—a&— Always+LRU —&— Prob-BP+LRU
5 ¥ —%—Hash+LRU —@— Prob-CH+LRU
o
.g 40
22
£ 035
T o
o
p
(]
>
1S
[«}]
(7p]

1 2 3 4 6 7 8 9

5
Cache Size (%)

Fig. 7. Server load with different cache size.

V. CONCLUSION

In order to improve the performance of caching in NDN,
this paper presents a probability-based caching strategy with
consistent hashing (Prob-CH). Prob-CH adopts a probability-
based caching to ensure that each packet can be cached to the
appropriate node, and uses consistent hashing to reduce the
cache redundancy without introducing extra communication
overhead to the network. We implement Prob-CH in Icarus
simulator and evaluate its performance by comparing with
other caching strategy. The results show that Prob-CH
outperforms others in terms of cache hit ratio, hop counts, and
producer load.

ACKNOWLEDGMENT

72

This work was supported by the Science and Technology

Fundament Research Fund of Shenzhen under grant

JCYJ20160318095218091, JCYJ20170307151807788.
REFERENCES

[1] L. Zhang et al., “Named Data Networking (NDN) Project,” October, pp.

1-26, 2010.

G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Comput. Networks, vol. 57, no. 16, pp. 3128-3141, 2013.

D. Karger et al., “Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the World Wide Web,”
STOC ’97 Proc. twenty-ninth Annu. ACM Symp. Theory Comput., pp.
654-663, 1997.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, R. L. Braynard,
and N. H. Briggs, “Networking Named Content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies, 2009, pp. 1-12.

N. Laoutaris, H. Che, and 1. Stavrakakis, “The LCD interconnection of
LRU caches and its analysis,” Perform. Eval., vol. 63, no. 7, pp. 609—
634, 2006.

W. K. Chai, D. He, 1. Psaras, and G. Pavlou, “Cache ‘less for more’ in
information-centric networks (extended version),” Comput. Commun.,
vol. 36, no. 7, pp. 758-770, 2013.

S. Eum, K. Nakauchi, M. Murata, Y. Shoji, and N. Nishinaga, “CATT:
potential based routing with content caching for ICN,” Proc. Second Ed.
ICN Work. Information-centric Netw. - ICN 12, p. 49, 2012.

1. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proceedings of the second edition
of the ICN workshop on Information-centric networking - ICN 12, 2012,
p. 55.

R. Huo, J. Liu, T. Hhuang, J. Chen, and Y. Liu, “Cooperative Caching
Strategy Based on Correlation Probability in Information Centric
Networking,” J. BEIJING Univ. POSTS Telecommun., vol. 38, no. 1, pp.
16-20, 2015.

X. Tang and S. T. Chanson, “Coordinated en-route web caching,” IEEE
Trans. Comput., vol. 51, no. 6, pp. 595-607, 2002.

W. Liu, S. Yu, J. Cai, and Y. Gao, “Scheme for Cooperative Caching in
ICN,” J. Softw., vol. 24, no. 8, pp. 1947-1962, 2014.

E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, best-effort
content location in cache networks,” in Proceedings - IEEE INFOCOM,
2009, pp. 2631-2635.

K. T. Yang and G. M. Chiu, “A hybrid pull-based with piggybacked
push protocol for cache sharing,” Comput. J., vol. 54, no. 12, pp. 2017—
2032,2011.

L. Saino, I. Psaras, and G. Pavlou, “Icarus: a Caching Simulator for
Information Centric Networking (ICN),” Proc. Seventh Int. Conf. Simul.
Tools Tech., pp. 66-75, 2014.

Geant. GEANT _Project Topology. Accessed: Jun. 2018. [Online].
Available:https://geant3plus.archive.geant.net/Resources/Media_Library
/Documents/GEANT Project TopologyMAR14 Web.pdf.

(2]
(3]

(4]

(3]

(6]

(7]

(8]

[10]

(1]

[12]

[13]

[14]

[15]

